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OVERVIEW
Timeline
• Project Start Date: 4/16/15
• Project End Date:  6/30/17
• Percent Complete: 50%

Barriers
• Cost
• Safety
• Performance
• Life

Budget
• Total project funding: $348,000

• DOE Share: $174,000
• Contractor Share: $174,000

• Funding FY 2016: $174,000
• Funding for FY 2017: $174,000



Relevance/Objectives
• Objective:

– To develop an electrochemically stable alkali-metal anode that can avoid the SEI layer formation 
and the alkali-metal dendrites during charge/discharge. To achieve the goal, a thin and elastic 
solid electrolyte membrane with a Fermi energy above that of metallic Li and an ionic 
conductivity σ > 10-4 S cm-1 (1) will be tested in contact with alkali-metal surface. (2) The 
interface between the alkali-metal and the electrolyte membrane should be free from liquid 
electrolyte, (3) have a low impedance for alkali-metal transport and plating, and (4) keep a good 
mechanical contact during electrochemical reactions.

• Impact:
– An alkali-metal anode (Li or Na) would increase the energy density for a given cathode by 

providing a higher cell voltage. However, lithium is not used as the anode in today’s commercial 
lithium-ion batteries because electrochemical dendrite formation can induce a cell short-circuit 
and critical safety hazards. This project is to find a way to avoid the formation of alkali-metal 
dendrites and to develop an electrochemical cell with dendrite-free alkali-metal anode. 
Therefore, once realized, the project will have a significant impact by an energy-density increase 
and battery safety; it will enable a commercial lithium-metal rechargeable battery of increased 
cycle life.

– Our key approach is to introduce a solid-solid contact between an alkali metal and a solid 
electrolyte membrane. Where SEI formation occurs, the creation of new anode surface at 
dendrites with each cycle causes capacity fade and a shortened cycle life. To avoid the SEI 
formation, a thin and elastic solid electrolyte membrane would be introduced, or the solid 
electrolyte should not be reduced by, but should be wet by, a metallic alkali-ion anode. 



Milestones

FY 17 Milestones:
• Demonstrate the cycle life and capacity of a Li-S cell-Completed (2017)
• Demonstrate a high-voltage cell containing the glass electrolyte-(Completed 

March 2017)
• Demonstrate a new battery concept-Completed (2017)
• Test energy density, cycle life, rate of charge/discharge of the new battery concept 

Ongoing (2017-2018)

FY 17 Deliverables
• Coin cells that are safe and low-cost with a long cycle life at a voltage V > 3.0 V



Approach

• Approach: Design, make and test cells

• Out-Year Goals: Coin cells that are safe and low-cost with a long 
cycle life at a voltage V > 3.0 V.

• Collaborations:  A. Manthiram, UT Austin, and Karim Zaghib, Hydro 
Quebec



Technical Accomplishments

• Shown a solution to safe alkali-metal anode

• Introduced alternative cathode strategies

• Provided a pathway to competitive electric 
road vehicles



Responses to Previous Year Reviewers 
Comments

Work not reviewed as it as presented as a poster, not in a lecture last year.



Dendrite-Free Alkali-Metal Plating

Leigang Xue et al.



Garnets with EC ≃ EF(Li)
• Li7La3Zr2O12 ·Al3+ : σi ≈ 10-4 S cm-1 (Weppener)

• Li7-xLa3Zr2-xTaxO12 · Al3+ : σi ≈ 10-3 S cm-1 at 25°C

• Problems:
Hygroscopic grain 
boundaries
Dendrite penetration of 
grain boundaries

2 wt% LiF
Stabilizes against moisture

Li/Polymer/LLZT: 2LiF/LiFePO4



Rhombohedral LiZr2(PO4)3

Preparation:
• With Zr-acetate precursor, rhombohedral LiZr2(PO4)3 forms at 900°C
• Dense Polycrystal pellets obtained at 1000°C with SPS
• Lithium wets LiZr2(PO4)3 at 350°C forming stable, Li+ conductive, amorphous 

interphase layer
Properties:
• σLi = 1 x 10-4 s cm-1 at 25°C
• ΔHm = 0.28 eV
• Li0 dendrite-free plating with Rct 0.50 Ω at 80°C

Yutao Li et al. PNAS 113, 13313, (2016)



Li/LiZr2(PO4)3/LiFe(PO4)

Yutao Li et al. PNAS, 113, 13313 (2016)





Polymer/Ceramic/Polymer Sandwich 
Electrolyte

CV curve of 
polymer/ceramic/polymer
Sandwich electrolyte
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Voltage Profiles of 
Li/LFP  with electrolytes of
Polymer and Polymer/Ceramic 

Cycling performance of  Li/LFP  with electrolytes of
Polymer and Polymer/Ceramic 

SEM image of lithium metal after 
cycling      No Dendrites





Arrhenius plots of Li+ ac conductivity 
and permittivity at 1000 Hz of a 

Li-Glass

M. Helena Braga, University of Porto, Portugal



Symmetric Li/Li-glass/Li cell 
(Glass σLi = I5 S cm-1 at 25°C



Li/Li-glass/γMnO2-C-Cu





High-Voltage Solid-State Cell
Li-NMO = Li[LixMn1.5-yNi0.5-2]O4-x-δFx, x = (y + z) ≈ 0.36
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Cycling between 3.0 and 5.0 V



Remaining Challenges

• Optimizing capacity of plated cathodes

• Demonstrate alternative alkali-metal rechargeable cells

• Determine roles of electrolyte electric dipoles

• Broader application
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Summary
Comparisons of ceramic, polymer, plasticizer, and 
glass electrolytes have:

• Shown a solution to safe alkali-metal anodes

• Introduced alternative cathode strategies

• Provided a path to competitive electric road vehicles.
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Back up Slides
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LEDs Lit with the Solid-State Cells



Cu/Li-glass/Al Cell

Back up slide 1



Charge/Discharge Cycles with 
Different Electrolytes

Back up slide 2



Impedance Spectra of a Spinel/Li Cell
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